Math 8

Assignments for

Mrs. Dean/Hunt – please feel free contact one of the teachers below with questions

Mrs. Evick - aevick@k12.wv.us

Mr. Fields - jcfields@k12.wv.us

Mrs. Long - along@k12.wv.us

*These assignments are not for advanced 8th grade students in Mrs. Long's Algebra class.

The following packet contains your assignments for the weeks of March 16-27. Please read below to see which parts you are to do each day. There are some notes for each section before the problems - READ THEM! Other sources of help include emailing your teaching at the above address, looking things up in your book (your book is online if you go to clever.com and click on the Big Ideas link and choose your book –MRL – the ebook choice is the easiest to use), KHAN Academy is a great website for math lessons by teachers, finding same topic on Aleks and reading the explanations or watch the tutoring videos, ask older siblings or relatives, or google it. PLEASE READ THE DIRECTIONS BEFORE EACH SET OF PROBLEMS.

Monday, March 16 – work on ALEKS pathway if you have cell service or internet Tuesday, March 17 – continue to work on ALEKS pathway - try to get 2 hours per week Wednesday, March 18 – ALEKS – if possible Thursday, March 19 – Do packet problems (1-20) Friday, March 20 – Do problems (21-28)

Monday, March 23 – Do problems (29-36) Tuesday, March 24 – Do problems (37-60) Wednesday, March 25 – Do problems (61-75) Thursday, March 26 – Do problems (76-86) Friday, March 27 – Do problems (87-100)

Please attempt every problem. If you are viewing the packet online, you should write the problems down on paper and show your work.

Evaluating Algebraic Expressions

- I. Substitute the given values for the variables in the expression
- 2. Evaluate the expression using the order of operations
 - Parentheses/Brackets (inside to outside)
 - Exponents
 - Multiplication/Division (left to right)
 - Addition/Subtraction (left to right)

ex:
$$9x^{2} - 4(y + 3z)$$

for $x = -3$, $y = 2$, $z = 5$
 $9(-3)^{2} - 4(2 + 3 \cdot 5)$
 $9(-3)^{2} - 4(2 + 15)$
 $9(-3)^{2} - 4 \cdot 17$
 $9 \cdot 9 - 4 \cdot 17$

$$81 - 4 \cdot 17$$

 $81 - 68 = 13$

The Distributive Property

- 1. Multiply the number outside the parentheses by each term in the parentheses.
- 2. Keep the addition/subtraction sign between each term.

ex:
$$5(8x - 3)$$

 $5(8x - 3)$
 $5(8x) - 5(3)$
 $40x - 15$

Simplifying Algebraic Expressions

- I. Clear any parentheses using the Distributive Property
- 2. Add or subtract like terms (use the sign in front of each term to determine whether to add or subtract)

ex:
$$2(3x - 4) - 12x + 9$$

$$2(3x - 4) - 12x + 9$$

$$6x - 8 - 12x + 9$$

$$-6x + 1$$

Evaluate each expression for a = 9, b = -3, c = -2, d = 7. Show your work.

F =			
1. a - cd	2. 2b ³ + c ²	3. <u>a + d - c</u> b	4. (a – b)² + d(a + c)
	6		
5. 4c (b a)	6. <u>a</u> - 5a	7. 2bc + d(12 – 5)	8. b + 0.5[8 - (2c + a)]

Simplify each expression using the Distributive Property.

	<u> </u>		
9. 5(2g – 8)	10. 7(y + 3)	11. $-3(4w - 3)$	12. (6r + 3)2
		. <	

Simplify each expression, showing all work.

13. 8(x + 1) - 12x	14. 6w - 7 + 12w - 3z	15. 9n - 8 + 3(2n - 11)	16. 3(7x + 4y) - 2(2x + y)
			1
17. (15 + 8d)(-5) — 24d + d	18. $9(b-1)-c+3b+c$	19. 20f – 4(5f + 4) + 16	20.8(h - 4) - h - (h + 7)
		5.	

Solving One-Step Equations

- Cancel out the number on the same side of the equal sign as the variable using inverse operations (addition/subtraction; multiplication/division)
- 2. Be sure to do the same thing to both sides of the equation!

ex:
$$-18 = 6j$$

 $\frac{-18 = 6j}{6}$
 $-3 = j \longrightarrow j = -3$

Solving Two-Step Equations

- Undo operations one at a time with inverse operations, using the order of operations in reverse (i.e. undo addition/subtraction before multiplication/division)
- 2. Be sure to always do the same thing to both sides of the equation!

ex:
$$\frac{a}{7} - 12 = -9$$

$$\frac{a}{7} - 12 = -9$$

$$\frac{a}{7} + 12 + 12$$

$$\frac{a}{7} \times \frac{a}{7} = 3 \times 7$$

$$a = 21$$

Solving Multi-Step Equations

- 1. Clear any parentheses using the Distributive Property
- 2. Combine like terms on each side of the equal sign
- 3. Get the variable terms on the same side of the equation by adding/subtracting a variable term to/from both sides of the equation to cancel it out on one side
- 4. The equation is now a two-step equation, so finish solving it as described above

ex:
$$5(2x - 1) = 3x + 4x - 1$$

 $10x - 5 = 3x + 4x - 1$
 $10x - 5 = 7x - 1$
 $-7x - 7x$
 $3x - 5 = -1$
 $+5 + 5$
 $3x = 4$
 $3x = 4$
 $3x = 4$

Salue each equation showing all work

Solve each equation, sh	owing all work.		
21. f - 64 = -23	227 = 2d	$\frac{b}{-12} = -6$	24. 13 = m + 21
25. 5x - 3 = -28	26. $\frac{\omega + 8}{-3} = -9$	27. $-8 + \frac{h}{4} = 13$	28. 22 = 6y + 7
29. 8x - 4 = 3x + 1	30. $-2(5d - 8) = 20$	31. 7r + 21 = 49r	32. $-9g - 3 = -3(3g + 2)$
	-		
33. $5(3x-2) = 5(4x+1)$	34. $3d - 4 + d = 8d - (-12)$	35. f - 6 = -2f + 3(f - 2)	362(y - 1) = 4y - (y + 2)
33. O(3)(2) = O(1)(1)	31. 3d 1 · d = 3d (12)	55. 1 - 6 - 21 - 5(1 - 2)	302(g - 1) - +g - (g + 2)
	-		

Scientific Notation

Standard Form to Scientific Notation: move the decimal after the first non-zero digit and eliminate any trailing zeros. Multiply by 10 to the power equal to the number of places you moved the decimal point. If the original number was greater than 1, the exponent is positive. If the number was less than 1, the exponent is negative.

Scientific Notation to Standard Form: move the decimal point the number of places indicated by the exponent. If the exponent is positive, move the decimal right. If negative, move left.

ex: 0.0000571

0,000,05,71

Original number < 1, so negative exponent

$$=$$
 5.71 x 10⁻⁵

ex: 3.5 x 103

Positive exponent, so move decimal right

Negative Exponents & Simplifying Monomials

Zero Exponent: Any number raised to the zero power equals 1

ex: $y^0 = 1$

Negative Exponent: Move the base to the opposite side of the fraction line and make the exponent positive

ex: $x^{-4} = \frac{1}{x^4}$

Monomial x Monomial: Multiply the coefficients and add the exponents of like bases

ex: $(4x^3)(2x^5) = 8x^8$

Monomial ÷ Monomial: Divide the coefficients and subtract the exponents of like bases

ex: $\frac{a}{a^6} = a^{-5} = \frac{1}{a^5}$

<u>Power of a Monomial</u>: Raise each base (including the coefficient) to that power. If a base already has an exponent, multiply the two exponents

ex: $(-2fg^5)^3 = -8f^3g^{15}$

<u>Power of a Quotient</u>: Raise each base (including the coefficient) to that power. If a base already has an exponent, multiply the two exponents

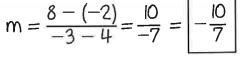
 $ex: \left(\frac{5d^3}{c}\right)^2 = \frac{25d^6}{c^2}$

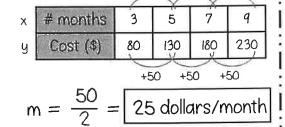
Convert each numbe	r to Scientific Notation.		0
37. 67,000,000,000	38. 0.0009213	39. 0.00000000004	40. 3,201,000,000,000,000
Convert each numbe	er to Standard Form.		
41. 5.92 x 10 ⁻⁵	42. I.I x 10 ⁷	43. 6.733 x 10 ⁻⁸	44. 3.27 x 10 ²
Simplify each expres	sion. Write your answe	ers using only positive expon	nents.
45. ω ⁻⁹	$\frac{46. m^5}{m^2}$	47. f ⁵ ·f ³	48. $\left(\frac{h^2}{g}\right)^3$
49. (a ⁵) ²	501_	51. z ⁰	52. 4r ⁶ · 3r · 2r ²
· / · (or)	b ⁻³		
		×	
$\frac{4p^{-2}}{3q^{-3}}$	54. 8d ³ 2cd ⁻²	55. (g ⁴ h) ² ·(2g ³ h ⁻¹) ²	56. (6a) ⁰
57. (-3n²k ⁴)²		59. <u>6 · 10⁷</u> 2 · 10 ³	60. (1.5 · 10 ⁻⁶) · (4 · 10 ⁹)

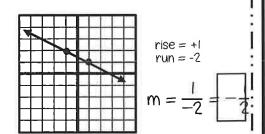
Slope & Rate of Change

<u>Finding the Slope Given Two Points</u>: Use the coordinates from the points in the slope formula:

Slope (m) =
$$\frac{y_2 - y_1}{x_2 - x_1}$$


<u>Finding the Rate of Change From a Table</u>: Determine the amount the dependent variable (y) is changing and the amount the independent variable (x) is changing.


Rate of Change =
$$\frac{\text{change in y}}{\text{change in x}}$$

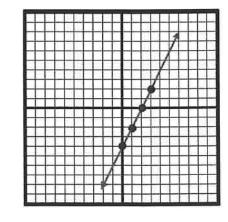

Finding the Slope From a Graph: Choose 2 points on the graph. Find the vertical change (rise) and horizontal change (run) between the 2 points and write it as a fraction $\frac{\text{rise}}{\text{run}}$. (Up is positive, down is negative, right is positive, and left is negative).

ex:
$$(4, -2)$$
, $(-3, 8)$

ex:

Graphing Linear Equations

Slope-Intercept Form:
$$y = mx + b$$
slope y-intercept


How To Graph:

- 1. Make a point on the y-axis at the y-intercept.
- 2. Use the slope to determine where to make the next point. The numerator tells you the rise (how far up/down) and the denominator tells you the run (how far right/left) to make the next point.
- 3. Repeat to make more points and then connect the points with a line.

ex:
$$y = 2x - 4$$

y-intercept: -4

slope:
$$2 = \frac{2}{1} \leftarrow rise$$

I ind the slope of the line that passes through the points. Show your work.

61. (-5, 3), (2, 1)

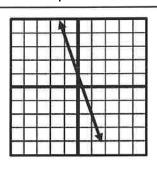
62. (8, 4), (11, 6)

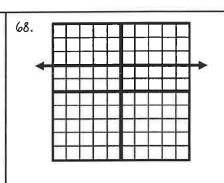
63. (9, 3), (9, -1)

64. (-4, -2), (-6, 4)

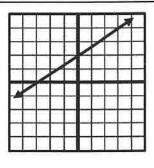
Find the rate of change. Show your work.

65.

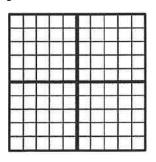

Number of Hours	3	6	9	12
Distance (in miles)	135	270	405	540


66.

Number of Weeks	ı	3	5	7
Pounds	173	169	165	161


Find the slope of the line.

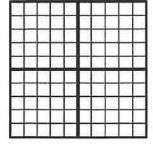
67.



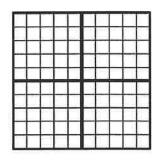
69.

Graph the line.

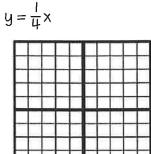
70. y = -x - 3



71.
$$y = \frac{1}{3}x + 2$$

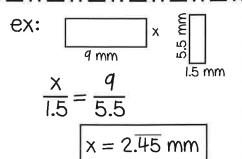

72.
$$y = -3x - 1$$

73.


$$y = -\frac{3}{2}x - 2$$

74. y = 2x + 1

75.


Solving Proportions

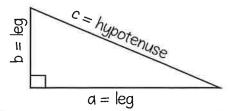
- 1. Set the two cross-products equal to each other
- 2. Solve the equation for the variable

ex:
$$\frac{m}{4} = \frac{3}{5}$$

 $\frac{5m}{5} = \frac{12}{5}$
 $m = 2.4$

Similar Figures

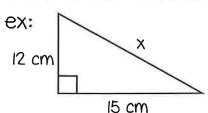
- 1. To find a missing side length, set up a proportion, matching up corresponding sides.
- 2. Solve the proportion using the steps above.



The Pythagorean Theorem

*** The Pythagorean Theorem applies to right triangles only **

The sides next to the right angle (a \mathcal{E} b) are legs


The side across from the right angle (c) is the hypotenuse

Pythagorean Theorem: $a^2 + b^2 = c^2$

To find the hypotenuse: add the squares of the legs and then find the square root of the sum

To find a leg: subtract the square of the given leg from the square of the hypotenuse and then find the square root of the difference

x is the hypotenuse

$$12^2 + 15^2 = x^2$$

$$144 + 225 = x^2$$

$$369 = x^2$$

$$x = \sqrt{369} \approx 19.2 \text{ cm}$$

ex:
$$a = ?$$
, $b = 3$, $c = 6$
a is a leg
$$a^{2} + 3^{2} = 6^{2}$$

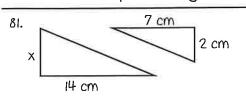
$$a^{2} + 9 = 36$$

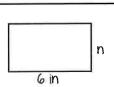
$$a^{2} = 36 - 9 = 27$$

$$a = \sqrt{27} \approx 5.2$$

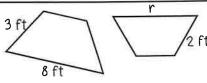
Solve each proportion, showing all work.

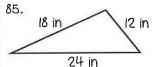
2		
76.	6	4
	7 =	m

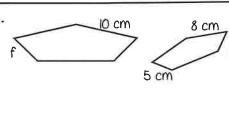

$$\frac{77}{5} = \frac{12}{5}$$

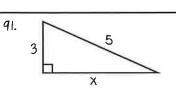

$$\frac{h}{7} = \frac{8}{2}$$

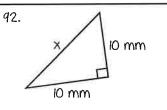
$$\frac{79.}{n} = \frac{9}{36}$$

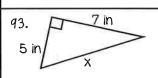

$$\frac{4}{21} = \frac{3}{c}$$

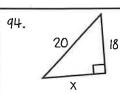

Assume each pair of figures is similar. Find the missing side length, showing all work.

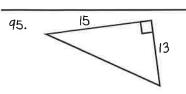


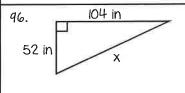


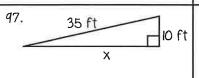

Find the missing side length in each right triangle to the nearest tenth. Show your work!

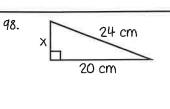

87.
$$a = 6$$
, $b = 8$, $c = ?$


88.
$$a=?$$
, $b=9$ cm, $c=13$ cm


90.
$$a = 14 \text{ in}, b = 14 \text{ in}, c = ?$$







Determine whether or not you can form a right triangle from the given side lengths. Explain.